Improving Multi-Label Classification by Means of Cross-Ontology Association Rules
نویسندگان
چکیده
Recently several methods were proposed for the improvement of multi-label classification performance by using constraints on labels. Such constraints are based on dependencies between classes often present in multi-label data and can be mined as association rules from training data. The rules are then applied in a post-processing step to correct the classifier predictions. Due to properties of association rule mining these improvement methods often achieve low improvement expressed mostly in the better prediction of large classes. In the presence of class ontologies this is undesirable because larger classes correspond to higher levels in hierarchies presenting general concepts and can thus be trivial. In this paper we overcome the problem by focusing on improving multi-label classification performance on small classes. We present a new method of improvement based on mining cross-ontology association rules which is best suited for classification with multiple class ontologies, but can also be applied to multi-label classification with one class taxonomy.
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMulti-label Classification with Multiple Class Ontologies
The term “big data” is now becoming more and more important in many fields. This data should not only be gathered, but also analyzed and, in some cases, classified. The categorization of each sample is becoming increasingly multifaceted, since it often means to assign not only one category from one ontology but multiple labels from multiple ontologies. This study investigates the improvement of...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملCross-Ontology Multi-level Association Rule Mining in the Gene Ontology
The Gene Ontology (GO) has become the internationally accepted standard for representing function, process, and location aspects of gene products. The wealth of GO annotation data provides a valuable source of implicit knowledge of relationships among these aspects. We describe a new method for association rule mining to discover implicit co-occurrence relationships across the GO sub-ontologies...
متن کاملClassification on Multi-label Dataset Using Rule Mining Technique
Most recent work has been focused on associative classification technique. Most research work of classification has been done on single label data. But it is not appropriate for some real world application like scene classification, bioinformatics, and text categorization. So that here we proposed multi label classification to solve the issues arise in single label classification. That is very ...
متن کامل